Convexity of the orbit-closed <i>C</i>-numerical range and majorization

نویسندگان

چکیده

We introduce and investigate the orbit-closed $C$-numerical range, a natural modification of range an operator introduced for $C$ trace-class by Dirr vom Ende. Our is conservative theirs because these two sets have same closure even coincide when finite rank. Since Ende's results concerning depend only on its closure, our inherits properties, but we also establish more. For selfadjoint, Ende were able to prove that their convex, asked whether it convex without taking closure. convexity selfadjoint providing characterization in terms majorization, unlocking door plethora which generalize properties known dimensions or has Under rather special hypotheses operators, show thereby partial answer question posed

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Convexity of the Joint Numerical Range

We consider linearly independent families of Hermitian matrices {A1, . . . , Am} so thatWk(A) is convex. It is shown that m can reach the upper bound 2k(n− k) + 1. A key idea in our study is relating the convexity of Wk(A) to the problem of constructing rank k orthogonal projections under linear constraints determined by A. The techniques are extended to study the convexity of other generalized...

متن کامل

Exponential convexity for majorization

* Correspondence: [email protected] Department of Mathematics, University of Karachi, University Road, Karachi, Pakistan Full list of author information is available at the end of the article Abstract In this article, we give more generalized results than in Anwar et al. (2010) and Latif and Pečarić (2010) in new direction by using second-order divided difference. We investigate the expone...

متن کامل

On the decomposable numerical range of operators

 ‎Let $V$ be an $n$-dimensional complex inner product space‎. ‎Suppose‎ ‎$H$ is a subgroup of the symmetric group of degree $m$‎, ‎and‎ ‎$chi‎ :‎Hrightarrow mathbb{C} $ is an irreducible character (not‎ ‎necessarily linear)‎. ‎Denote by $V_{chi}(H)$ the symmetry class‎ ‎of tensors associated with $H$ and $chi$‎. ‎Let $K(T)in‎ (V_{chi}(H))$ be the operator induced by $Tin‎ ‎text{End}(V)$‎. ‎Th...

متن کامل

The Joint Essential Numerical Range of operators: Convexity and Related Results

LetW (A) andWe(A) be the joint numerical range and the joint essential numerical range of an m-tuple of self-adjoint operators A = (A1, . . . , Am) acting on an infinite dimensional Hilbert space, respectively. In this paper, it is shown that We(A) is always convex and admits many equivalent formulations. In particular, for any fixed i ∈ {1, . . . ,m}, We(A) can be obtained as the intersection ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear & Multilinear Algebra

سال: 2021

ISSN: ['0308-1087', '1026-7573', '1563-5139']

DOI: https://doi.org/10.1080/03081087.2021.1895702